Initial commit: THE FACTORY - Iterative Image Generation

Tasks:
- image_generate: Generate image from prompt
- image_variant: Generate variant of existing image
- image_upscale: Increase resolution

Models: SDXL, Flux, SDXL-Turbo
RunPod Serverless Handler
This commit is contained in:
ARCHITECT
2026-01-06 08:28:16 +00:00
commit 1cad39bc9e
7 changed files with 1181 additions and 0 deletions

300
executor.py Normal file
View File

@@ -0,0 +1,300 @@
"""
=============================================================================
THE FACTORY - Executor
=============================================================================
Genera artefactos usando diferentes modelos de IA.
Soporta: texto, código, imágenes, documentos.
=============================================================================
"""
import os
import logging
import base64
from typing import Dict, Any, Optional
import anthropic
import openai
import httpx
from config import FactoryConfig, FunctionType, ModelConfig
logger = logging.getLogger("factory.executor")
class Executor:
"""
El Executor genera artefactos usando modelos de IA.
"""
def __init__(self, config: FactoryConfig):
self.config = config
# Inicializar clientes
if config.anthropic_api_key:
self.anthropic = anthropic.Anthropic(api_key=config.anthropic_api_key)
else:
self.anthropic = None
logger.warning("ANTHROPIC_API_KEY no configurada")
if config.openai_api_key:
self.openai = openai.OpenAI(api_key=config.openai_api_key)
else:
self.openai = None
logger.warning("OPENAI_API_KEY no configurada")
self.replicate_key = config.replicate_api_key
def generate(
self,
function: FunctionType,
context: Dict[str, Any],
budget_remaining: float
) -> Dict[str, Any]:
"""
Genera un artefacto.
Args:
function: Tipo de función
context: Contexto preparado por el Director
budget_remaining: Presupuesto disponible
Returns:
{
"artifact": <resultado>,
"cost_usd": <coste>,
"model_used": <modelo>,
"tokens_used": <tokens>
}
"""
model_name = context.get("model", self.config.default_models[function])
model_config = self.config.get_model(model_name)
if not model_config:
raise ValueError(f"Modelo desconocido: {model_name}")
prompt = context.get("prompt", "")
logger.info(f"Generando con {model_name} ({model_config.provider})")
if function == FunctionType.IMAGE_GENERATION:
return self._generate_image(prompt, model_config, budget_remaining)
else:
return self._generate_text(prompt, model_config, function, budget_remaining)
def _generate_text(
self,
prompt: str,
model: ModelConfig,
function: FunctionType,
budget_remaining: float
) -> Dict[str, Any]:
"""Genera texto usando Claude o GPT."""
if model.provider == "anthropic":
return self._generate_anthropic(prompt, model, function)
elif model.provider == "openai":
return self._generate_openai(prompt, model, function)
else:
raise ValueError(f"Provider no soportado: {model.provider}")
def _generate_anthropic(
self,
prompt: str,
model: ModelConfig,
function: FunctionType
) -> Dict[str, Any]:
"""Genera con Anthropic Claude."""
if not self.anthropic:
raise RuntimeError("Cliente Anthropic no inicializado")
# System prompt según función
system = self._get_system_prompt(function)
try:
response = self.anthropic.messages.create(
model=model.name,
max_tokens=model.max_tokens,
system=system,
messages=[{"role": "user", "content": prompt}]
)
# Extraer texto
artifact = ""
for block in response.content:
if hasattr(block, "text"):
artifact += block.text
# Calcular coste
input_tokens = response.usage.input_tokens
output_tokens = response.usage.output_tokens
cost = (
(input_tokens / 1000) * model.cost_per_1k_input +
(output_tokens / 1000) * model.cost_per_1k_output
)
return {
"artifact": artifact,
"cost_usd": cost,
"model_used": model.name,
"tokens_used": input_tokens + output_tokens,
"input_tokens": input_tokens,
"output_tokens": output_tokens
}
except Exception as e:
logger.error(f"Error Anthropic: {e}")
raise
def _generate_openai(
self,
prompt: str,
model: ModelConfig,
function: FunctionType
) -> Dict[str, Any]:
"""Genera con OpenAI GPT."""
if not self.openai:
raise RuntimeError("Cliente OpenAI no inicializado")
system = self._get_system_prompt(function)
try:
response = self.openai.chat.completions.create(
model=model.name,
max_tokens=model.max_tokens,
messages=[
{"role": "system", "content": system},
{"role": "user", "content": prompt}
]
)
artifact = response.choices[0].message.content
# Calcular coste
input_tokens = response.usage.prompt_tokens
output_tokens = response.usage.completion_tokens
cost = (
(input_tokens / 1000) * model.cost_per_1k_input +
(output_tokens / 1000) * model.cost_per_1k_output
)
return {
"artifact": artifact,
"cost_usd": cost,
"model_used": model.name,
"tokens_used": input_tokens + output_tokens,
"input_tokens": input_tokens,
"output_tokens": output_tokens
}
except Exception as e:
logger.error(f"Error OpenAI: {e}")
raise
def _generate_image(
self,
prompt: str,
model: ModelConfig,
budget_remaining: float
) -> Dict[str, Any]:
"""Genera imagen con Replicate (Flux)."""
if not self.replicate_key:
raise RuntimeError("REPLICATE_API_KEY no configurada")
try:
# Llamar a Replicate API
response = httpx.post(
"https://api.replicate.com/v1/predictions",
headers={
"Authorization": f"Token {self.replicate_key}",
"Content-Type": "application/json"
},
json={
"version": self._get_replicate_version(model.name),
"input": {
"prompt": prompt,
"aspect_ratio": "1:1",
"output_format": "webp",
"output_quality": 90
}
},
timeout=60.0
)
response.raise_for_status()
prediction = response.json()
# Esperar resultado
prediction_id = prediction["id"]
result = self._wait_for_replicate(prediction_id)
return {
"artifact": {
"url": result["output"][0] if isinstance(result["output"], list) else result["output"],
"prompt": prompt
},
"cost_usd": model.cost_per_1k_input, # Coste fijo por imagen
"model_used": model.name,
"prediction_id": prediction_id
}
except Exception as e:
logger.error(f"Error Replicate: {e}")
raise
def _wait_for_replicate(self, prediction_id: str, max_wait: int = 120) -> Dict:
"""Espera resultado de Replicate."""
import time
for _ in range(max_wait):
response = httpx.get(
f"https://api.replicate.com/v1/predictions/{prediction_id}",
headers={"Authorization": f"Token {self.replicate_key}"},
timeout=10.0
)
result = response.json()
if result["status"] == "succeeded":
return result
elif result["status"] == "failed":
raise RuntimeError(f"Replicate failed: {result.get('error')}")
time.sleep(1)
raise TimeoutError("Replicate prediction timeout")
def _get_replicate_version(self, model_name: str) -> str:
"""Obtiene version ID de Replicate."""
versions = {
"black-forest-labs/flux-1.1-pro": "80a09d66baa990429c004a8ff540ce96c1e9e0e9c381",
"black-forest-labs/flux-schnell": "f2ab8a5bfe79f02f0789a146cf5e73d2a4ff2684a98c2b"
}
return versions.get(model_name, versions["black-forest-labs/flux-schnell"])
def _get_system_prompt(self, function: FunctionType) -> str:
"""Obtiene system prompt según función."""
prompts = {
FunctionType.TEXT_GENERATION: """Eres un generador de contenido experto.
Produces textos de alta calidad, bien estructurados y profesionales.
Sigues las instrucciones del usuario con precisión.""",
FunctionType.CODE_GENERATION: """Eres un programador experto.
Generas código limpio, eficiente y bien documentado.
Sigues mejores prácticas y patrones de diseño apropiados.
Incluyes manejo de errores y comentarios útiles.""",
FunctionType.DOCUMENT_GENERATION: """Eres un experto en documentación profesional.
Creas documentos claros, completos y bien formateados.
Aseguras que toda la información necesaria esté presente.
Usas un tono profesional y apropiado al contexto.""",
FunctionType.AUDIO_GENERATION: """Eres un experto en producción de audio.
Generas scripts y descripciones para contenido de audio.""",
FunctionType.VIDEO_GENERATION: """Eres un experto en producción de video.
Generas guiones y descripciones para contenido de video."""
}
return prompts.get(function, prompts[FunctionType.TEXT_GENERATION])